Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Front Pediatr ; 11: 1082083, 2023.
Article in English | MEDLINE | ID: covidwho-2257109

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children is characterized by a wide variety of expressions ranging from asymptomatic to, rarely, critical illness. The basis of this variability is not yet fully understood. The aim of this study was to identify clinical and genetic risk factors predisposing to disease susceptibility and progression in children. Methods: We enrolled 181 consecutive children aged less than 18 years hospitalized with or for SARS-CoV-2 infection during a period of 24 months. Demographic, clinical, laboratory, and microbiological data were collected. The development of coronavirus disease 2019 (COVID-19)-related complications and their specific therapies were assessed. In a subset of 79 children, a genetic analysis was carried out to evaluate the role of common COVID-19 genetic risk factors (chromosome 3 cluster; ABO-blood group system; FUT2, IFNAR2, OAS1/2/3, and DPP9 loci). Results: The mean age of hospitalized children was 5.7 years, 30.9% of them being under 1 year of age. The majority of children (63%) were hospitalized for reasons different than COVID-19 and incidentally tested positive for SARS-CoV-2, while 37% were admitted for SARS-CoV-2 infection. Chronic underlying diseases were reported in 29.8% of children. The majority of children were asymptomatic or mildly symptomatic; only 12.7% developed a moderate to critical disease. A concomitant pathogen, mainly respiratory viruses, was isolated in 53.3%. Complications were reported in 7% of children admitted for other reasons and in 28.3% of those hospitalized for COVID-19. The respiratory system was most frequently involved, and the C-reactive protein was the laboratory test most related to the development of critical clinical complications. The main risk factors for complication development were prematurity [relative risk (RR) 3.8, 95% confidence interval (CI) 2.4-6.1], comorbidities (RR 4.5, 95% CI 3.3-5.6), and the presence of coinfections (RR 2.5, 95% CI 1.1-5.75). The OAS1/2/3 risk variant was the main genetic risk factor for pneumonia development [Odds ratio (OR) 3.28, 95% CI 1-10.7; p value 0.049]. Conclusion: Our study confirmed that COVID-19 is generally less severe in children, although complications can develop, especially in those with comorbidities (chronic diseases or prematurity) and coinfections. Variation at the OAS1/2/3 genes cluster is the main genetic risk factor predisposing to COVID-19 pneumonia in children.

2.
Pharmacol Res ; 191: 106702, 2023 05.
Article in English | MEDLINE | ID: covidwho-2245841

ABSTRACT

We have recently demonstrated in a double-blind randomized trial the beneficial effects of L-Arginine in patients hospitalized for COVID-19. We hypothesize that one of the mechanisms underlying the favorable effects of L-Arginine is its action on inflammatory cytokines. To verify our hypothesis, we measured longitudinal plasma levels of pro-inflammatory and anti-inflammatory cytokines implied in the pathophysiology of COVID-19 in patients randomized to receive oral L-Arginine or placebo. The study was successfully completed by 169 patients. Patients in the L-Arginine arm had a reduced respiratory support evaluated at 10 and 20 days; moreover, the time to hospital discharge was significantly shorter in the L-Arginine group. The assessment of circulating cytokines revealed that L-Arginine significantly reduced the circulating levels of pro-inflammatory IL-2, IL-6, and IFN-γ and increased the levels of the anti-inflammatory IL-10. Taken together, these findings indicate that adding L-Arginine to standard therapy in COVID-19 patients markedly reduces the need of respiratory support and the duration of in-hospital stay; moreover, L-Arginine significantly regulates circulating levels of pro-inflammatory and anti-inflammatory cytokines.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Cytokines , Arginine/therapeutic use , Anti-Inflammatory Agents/adverse effects
5.
Diabetes Care ; 45(11): 2683-2688, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2022459

ABSTRACT

OBJECTIVE: Diabetes and the outpatient diabetes treatment regimen have been identified as risk factors for poor outcomes in patients with sepsis. However, little is known about the effect of tight inpatient glycemic control in the setting of coronavirus disease 2019 (COVID-19). Therefore, we examined the effect of hyperglycemia in patients with diabetes hospitalized because of COVID-19. RESEARCH DESIGN AND METHODS: We analyzed data from 1,938 COVID-19 patients with diabetes hospitalized for COVID-19 from March to May 2020 at a large academic medical center in New York City. Patients were divided into two groups based on their inpatient glycemic values, and a Cox proportional hazards regression model was used to assess the independent association of inpatient glucose levels with mortality (primary outcome) and the risk of requiring mechanical ventilation (MV) (secondary outcome). RESULTS: In our analysis, 32% of the patients were normoglycemic and 68% hyperglycemic. Moreover, 31% of the study subjects died during hospitalization, and 14% required MV, with inpatient hyperglycemia being significantly associated with both mortality and the requirement for MV. Additionally, in the Cox regression analysis, after adjustment for potential confounders, including age, sex, race, BMI, HbA1c, comorbidities, inflammatory markers, and corticosteroid therapy, patients with uncontrolled hyperglycemia had a higher risk of dying (hazard ratio [HR] 1.54, 95% CI 1.00-2.36, P = 0.049) and of requiring MV (HR 4.41, 95% CI 1.52-2.81, P = 0.006) than those with normoglycemia. CONCLUSIONS: A tight control of inpatient hyperglycemia may be an effective method for improving outcomes in patients with diabetes hospitalized for COVID-19.


Subject(s)
COVID-19 , Diabetes Mellitus , Hyperglycemia , Humans , SARS-CoV-2 , Hospitalization , Hyperglycemia/complications , Risk Factors , Hospitals , Retrospective Studies , Hospital Mortality
6.
Nutrients ; 13(11)2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1502476

ABSTRACT

l-Arginine is involved in many different biological processes and recent reports indicate that it could also play a crucial role in the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we present an updated systematic overview of the current evidence on the functional contribution of L-Arginine in COVID-19, describing its actions on endothelial cells and the immune system and discussing its potential as a therapeutic tool, emerged from recent clinical experimentations.


Subject(s)
Arginine/metabolism , COVID-19/metabolism , Endothelial Cells/metabolism , Immune System/metabolism , SARS-CoV-2/pathogenicity , Animals , Arginine/therapeutic use , COVID-19/immunology , COVID-19/virology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/virology , Host-Pathogen Interactions , Humans , Immune System/drug effects , Immune System/immunology , Immune System/virology , Nitric Oxide/metabolism , SARS-CoV-2/immunology , COVID-19 Drug Treatment
7.
Transfusion ; 61(12): 3381-3389, 2021 12.
Article in English | MEDLINE | ID: covidwho-1467646

ABSTRACT

BACKGROUND: A large proportion of SARS-CoV-2-infected individuals does not develop severe symptoms. Serological tests help in evaluating the spread of infection and disease immunization. The aim of this study was to prospectively examine the trends and risk factors of SARS-CoV-2 infection in blood donors. STUDY DESIGN AND METHODS: We screened 8798 asymptomatic donors presenting in Milan from July 2020 to February 2021 (10,680 presentations) before the vaccination campaign for anti-nucleoprotein (NP) antibodies, and for anti-spike receptor-binding domain (RBD) antibodies and nasopharyngeal swab PCR in those who tested positive. RESULTS: The prevalence of anti-NP+/RBD+ tests increased progressively with time up to ~15% (p < .0001), preceded by a peak of PCR+ tests. Anti-RBD titers were higher in anti-NP IgG+/IgM+ than in IgG+/IgM- individuals and in those with a history of infection (p < .0001); of these 197/630 (31.2%) displayed high titers (>80 AU/ml). Anti-RBD titers declined during follow-up, depending on baseline titers (p < .0001) and time (p = .025). Risk factors for seroconversion were a later presentation date and non-O ABO blood group (p < .001). A positive PCR was detected in 0.7% of participants in the absence of SARS-CoV-2 viremia. CONCLUSIONS: During the second wave of SARS-CoV-2 infection in Northern Italy, we detected an increase in seroprevalence in healthy blood donors from ~4% to ~15%, with a trend paralleling that observed in the general population. Seroconversion was more frequent in carriers of non-O blood groups. The persistence of anti-RBD antibodies was short-lived.


Subject(s)
Asymptomatic Infections , Blood Donors , COVID-19 , Antibodies, Viral/blood , COVID-19/transmission , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Prospective Studies , Risk Factors , SARS-CoV-2 , Seroepidemiologic Studies
8.
EClinicalMedicine ; 40: 101125, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1408847

ABSTRACT

BACKGROUND: We and others have previously demonstrated that the endothelium is a primary target of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and L-arginine has been shown to improve endothelial dysfunction. However, the effects of L-arginine have never been evaluated in coronavirus disease 2019 (COVID-19). METHODS: This is a parallel-group, double-blind, randomized, placebo-controlled trial conducted on patients hospitalized for severe COVID-19. Patients received 1.66 g L-arginine twice a day or placebo, administered orally. The primary efficacy endpoint was a reduction in respiratory support assessed 10 and 20 days after randomization. Secondary outcomes were the length of in-hospital stay, the time to normalization of lymphocyte number, and the time to obtain a negative real-time reverse transcription polymerase chain reaction (RT-PCR) for SARS-CoV-2 on nasopharyngeal swab. This clinical trial had been registered at ClinicalTrials.gov, identifier: NCT04637906. FINDINGS: We present here the results of the initial interim analysis on the first 101 patients. No treatment-emergent serious adverse events were attributable to L-arginine. At 10-day evaluation, 71.1% of patients in the L-arginine arm and 44.4% in the placebo arm (p < 0.01) had the respiratory support reduced; however, a significant difference was not detected 20 days after randomization. Strikingly, patients treated with L-arginine exhibited a significantly reduced in-hospital stay vs placebo, with a median (interquartile range 25th,75th percentile) of 46 days (45,46) in the placebo group vs 25 days (21,26) in the L-arginine group (p < 0.0001); these findings were also confirmed after adjusting for potential confounders including age, duration of symptoms, comorbidities, D-dimer, as well as antiviral and anticoagulant treatments. The other secondary outcomes were not significantly different between groups. INTERPRETATION: In this interim analysis, adding oral L-arginine to standard therapy in patients with severe COVID-19 significantly decreases the length of hospitalization and reduces the respiratory support at 10 but not at 20 days after starting the treatment. FUNDING: Both placebo and L-arginine were kindly provided by Farmaceutici Damor S.p.A., Naples.

9.
Applied Sciences ; 11(10):4381, 2021.
Article in English | MDPI | ID: covidwho-1226999

ABSTRACT

Currently the whole world is affected by the COVID-19 disease. Italy was the first country to be seriously affected in Europe, where the first COVID-19 outbreak was localized in the Lombardy region. The further spreading of the cases led to the lockdown of the most affected regions in northern Italy and then the entire country. In this work we investigated an epidemic spread scenario in the Lombardy region by using the origin–destination matrix with information about the commuting flows among 1450 urban areas within the region. We performed a large-scale simulation-based modeling of the epidemic spread over the networks related to three main motivations, i.e., work, study and occasional transfers to quantify the potential contribution of each category of travellers to the spread of the epidemic process. Our findings outline that the three networks are characterised by different weight dynamic growth rates and that the network “work” has a critical role in the diffusion phenomenon showing the greatest contribution to the epidemic spread.

10.
Blood Transfus ; 19(3): 181-189, 2021 05.
Article in English | MEDLINE | ID: covidwho-1067611

ABSTRACT

BACKGROUND: The Milan metropolitan area in Northern Italy was among the most severely hit by the SARS-CoV-2 outbreak. The aim of this study was to examine the seroprevalence trends of SARS-CoV-2 in healthy asymptomatic adults, and the risk factors and laboratory correlates of positive tests. MATERIALS AND METHODS: We conducted a cross-sectional study in a random sample of blood donors, who were asymptomatic at the time of evaluation, at the beginning of the first phase (February 24th to April 8th 2020; n=789). Presence of IgM/IgG antibodies against the SARS-CoV-2-Nucleocapsid protein was assessed by a lateral flow immunoassay. RESULTS: The test had a 100/98.3 sensitivity/specificity (n=32/120 positive/negative controls, respectively), and the IgG test was validated in a subset by an independent ELISA against the Spike protein (n=34, p<0.001). At the start of the outbreak, the overall adjusted seroprevalence of SARS-CoV-2 was 2.7% (95% CI: 0.3-6%; p<0.0001 vs 120 historical controls). During the study period, characterised by a gradual implementation of social distancing measures, there was a progressive increase in the adjusted seroprevalence to 5.2% (95% CI: 2.4-9.0; 4.5%, 95% CI: 0.9-9.2% according to a Bayesian estimate) due to a rise in IgG reactivity to 5% (95% CI: 2.8-8.2; p=0.004 for trend), but there was no increase in IgM+ (p=not significant). At multivariate logistic regression analysis, IgG reactivity was more frequent in younger individuals (p=0.043), while IgM reactivity was more frequent in individuals aged >45 years (p=0.002). DISCUSSION: SARS-CoV-2 infection was already circulating in Milan at the start of the outbreak. The pattern of IgM/IgG reactivity was influenced by age: IgM was more frequently detected in participants aged >45 years. By the end of April, 2.4-9.0% of healthy adults had evidence of seroconversion.


Subject(s)
Asymptomatic Infections/epidemiology , Blood Donors/statistics & numerical data , COVID-19/epidemiology , Pandemics , SARS-CoV-2/immunology , Adult , Age Factors , Antibodies, Viral/blood , Bayes Theorem , COVID-19/immunology , COVID-19 Serological Testing/methods , Confidence Intervals , Cross-Sectional Studies , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Italy/epidemiology , Male , Middle Aged , Regression Analysis , Risk Factors , Seroconversion , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL